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A long-term objective of density functional theory (DFT) has been to obtain the elec- 
tronic kinetic energy density directly from the ground-state density, without recourse to 
wave functions. This is the more important in relativistic DFT since Dirac wave func- 
tions have four components. The above aim is here achieved for the admittedly special- 
ized square barrier model of a one-dimensional inhomogeneous electron liquid. 

Keywork Relativistic electron liquid 

1. INTRODUCTION 

Density functional theory (DFT), having its orgins in the pioneering 
studies of Thomas [I], Fermi [2] and Dirac [3,4] and being formally 
completed by the theorem of Hohenberg and Kohn [5], seeks to ex- 
press the ground-state energy of an N-electron assembly as a func- 
tional of the electron density p. One part of such a functional is the 
single-particle kinetic energy T k ] ,  which is widely used in current ap- 
plications of DFT, following the work of Slater [6], which was for- 
malized in the later study of Kohn and Sham [7]. 
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32 N. H. MARCH 

Though most applications at the present time return to one-electron 
wave functions (the so-called Slater-Kohn-Sham (SKS) orbitals) to 
calculate the single-particle kinetic energy T, it is widely recognized 
that ‘orbital-free’ theory affords a very desirable longer-term objective 

This situation is the more important in relativistic DFT, our domi- 
nant concern here, since in contrast to Schrodinger (or SKS) wave 
functions, Dirac spinors have four components. Hence to work with 
the ground-state density p alone, without recourse to individual Dirac 
one-electron wave functions, is an extremely attractive prospect for 
the future. 

This is the motivation for the present study, but because of the com- 
plexity of the problem we shall approach the task of calculating the 
(single-particle) kinetic energy from the ground-state density via an 
admittedly very specialized model. This is chosen here as the square 
barrier model of a one-dimensional inhomogeneous electron liquid. 
Appeal can then be made to an earlier investigation of Baltin and 
March [9], in which separate expressions were obtained for the kine- 
tic energy per unit length (‘density’ in one-dimension) t(z), and for the 
ground-state electron density p(z). 

PI. 

2. SUMMARY OF NON-RELATIVISTIC RESULTS 
FOR KINETIC ENERGY AND ELECTRON DENSITY 
OF A SEMI-INFINITE ELECTRON LIQUID 
IN d DIMENSIONS 

Before appealing to this relativistic study of Baltin and March [9] for 
a finite square barrier of height Vo say, it will be useful for what fol- 
lows to summarize earlier work by the present writer [lo] pertaining 
to semi-infinite electron liquids in Schrodinger wave mechanics: i.e., 
in the limit when the barrier height Vo tends to infinity, but now in 
d dimensions. The passage to the limit VO + 00 is straightforward 
in non-relativistic theory, as this theory already corresponds to the 
limiting case c + 00, c being the velocity of light. As further em- 
phasized below, one has to compare VO with mc’ in relativistic theory, 
m being the rest mass of the electron. Then, one must take first the 
limit c 4 00, before proceeding to the infinite barrier case. 
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RELATMSTIC ELECTRON LIQUID 33 

For this non-relativistic model when Vo -t 00, the resulting semi- 
infinite electron liquid problem was solved by the writer [lo] in d 
dimensions. For singly occupied levels, the density p d ( z )  was then 
obtained as 

where kf is the Fermi wave number. This result (2.1), with j denoting 
the appropriate spherical Bessel function, is valid for d odd; if d even is 
needed then m(z) etc., can be calculated in terms of Bessel functions of 
a purely imaginary argument [lo]. 

The corresponding result for the kinetic energy density td(z) will also 
be quoted here, again for d odd [lo]. 

k .  
t d ( Z )  = td0 + 7 bd(4 - PdOI 

where tdo is the kinetic energy density of the homogeneous electron 
liquid of number density p d .  These non-relativistic results (2.1) and 
(2.2) will be appealed to later. Before that, the finite square barrier 
model will be treated in one-dimension, but now via Dirac's relativistic 
wave equation. 

3. RELATION BETWEEN KINETIC ENERGY 
AND ELECTRON DENSITIES IN SQUARE 

INHOMOGENEOUS ELECTRON LIQUID 
TREATED RELATIVISTICALLY 

BARRIER MODEL OF A ONE-DIMENSIONAL 

To the writer's knowledge, results for pd(z)  and td(z) for the finite 
square barrier model via the Dirac equation have, as yet, only been 
obtained for the one-dimensional (d = 1 )  case [9]. This study of Baltin 
and March gives t l(z)  and pl (z )  quite explicitly, for a finite square 
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34 N. H. MARCH 

barrier of height VO and, as already anticipated in Section 2 above, the 
ratio vo/mc2 = v plays a significant role. 

Their results for rl(z) and pl (z )  are written as integrals over a vari- 
able T running from 0 to T-, where T = ti k/mc. The result for p l ( z )  will 
be written only for the region inside the containing energy barrier 
of height Vo, where the inhomogeneity in density disappears suf- 
ficiently far into the bulk electron liquid of uniform density plo say. 
The form of pl(z) is then subsumed in the dimensionless 'displaced 
charge' Al(z) (see Eq. (Al )  with d = l ) ,  which is given by [9] 

where w = (1+?)'12 and < = (mclti) z. 

fully expressed by writing 
The corresponding result for the kinetic energy density tl(z) is use- 

tl(2,kf) = th""(kf) + t""(Z,kf) ( 3 4  

where the oscillatory contribution tow has the form [9] 

and rhomo is the homogeneous electron liquid kinetic energy density. 
The basic step in relating Eqs. (3.1) and (3.3) is now to differentiate 

both expressions with respect to T/, to find first of all for the electron 
density the result 
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RELATMSTIC ELECTRON LIQUID 35 

By a similar procedure, one can derive from Eq. (3.3) the result 

If one now multiplies Eq. (3.4) throughout by (wf- 1) and subtracts 
from Eq. (3 .9 ,  the remarkably simple relation 

emerges. Furthermore, it must be stressed that v = Vo/rnc2 has 
disappeared explicitly from the relation (3.6), even though, of course, 
tow(z, k.) and Al(z) separately depend on the choice of barrier height. 
It is worthwhile, for taking the non-relativistic limit of Eq. (3.6), to use 
the definition of w immediately below Eq. (3.1) to write 

hence, using Eq. (3.7) in Eq. (3.6): 

-(wf 7rh + 1)- = 2 2  [ 7- ~ + A1(z)]. (3.8) m2c3 &f &f 

This Eq. (3.8) is then the desired connection between kinetic energy 
and electron densities in this square barrier model of an inhomoge- 
neous relativistic electron liquid. 

To compare this exact result (3.8) derived via Dirac’s relativistic 
wave equation, with a non-relativistic (nr) Schrodinger counterpart, let 
us next note that wf + 1 as the velocity of light c is allowed to tend to 
infinity. Then, replacing  fin Eq. (3.8) in favour of kfi one finds the 
non-relativistic limit to be 
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36 N. H. MARCH 

To conclude this section, let us check Eq. (3.9) in the infinite barrier 
non-relativistic limit. 

3.1. Non-relativistic Infinite Barrier Limit 

One has almost immediately the dimensionless displaced charge in 
terms of the zero-order spherical Bessel function jo(x) = sin+ 
(compare Eq. (2.1)): 

A ~ ( z )  = -j0(2kfz). (3.10) 

The corresponding result for the non-relativistic kinetic energy in the 
same limit is given by [9] 

(3.1 1) 

where the first-order spherical Bessel functionjl(x) is simply [sin x - x 
cos x]  / A?. But now one has the mathematical identity 

Combining Eqs. (3.10) and (3.12) immediately yields 

d 
d(2kf z)  

jl(2kfz) = - 

(3.12) 

(3.13) 

and hence one can substitute for jl(2kfz) in Eq. (3.11) to obtain 

kr’ k a  
t?(Z)  = -A?(Z) +f - A ~ ( Z ) .  

7r 2TZ a2 
(3.14) 

Introducing the dimensionless change At&) in the kinetic energy 
density induced by the barrier, defined by 

At*(z) = tr(z)/tlO (3.15) 

and noting that the homogeneous electron liquid has t i 0  = kj/37r for 
the doubly filled level case under consideration, Eq. (3.14) is readily 
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RELATMSTIC ELECTRON LIQUID 37 

rewritten as 

(3.16) 

the &dimensional generalization of this equation, using the results of 
Section 2, being recorded in Appendix 1. It is worth stressing here that 
in non-relativistic theory, Eq. (3.16) affords a direct route to calculate 
the kinetic energy density from the ground-state electron density. In 
contrast, the relativistic theory of the inhomogeneous electron liquid 
generated by the one-dimensional square barrier model has the non- 
relativistic limit (3.9). It is apparent that, to check Eq. (3.9) in the 
infinite barrier limit, the LHS can be evaluated directly by inserting 
Eq. (3.1 1) while the RHS is determined solely by use of Eq. (3.10) for 
the displaced charge. 

Taking first the RHS of Eq. (3.9), one readily obtains by using 
Eq. (3.12) the result 

Turning to the evaluation of the LHS of Eq. (3.9), let us first insert 
Eq. (3.15) to find 

One must now use the result (3.16) for At,,(z) in Eq. (3.18). Some 
intermediate steps are supplied in Appendix 2, where two mathemati- 
cal identities relating spherical Bessel functions, and their derivatives, 
of different orders are invoked. The first term on the RHS of Eq. 
(3.18) is then easily written in terms ofjo andj, which are already pre- 
sent in Eq. (3.17): 

(3.19) 3k2 3kf . kr’ &,(Z) = - --fj0(2kfz) + -11 (2kfz). 
lr lr lrZ 

The evaluation of the second term on the RHS of Eq. (3.18) after 
inserting Eq. (3.16) evidently involves second derivatives of jo(x). 
After invoking the mathematical identities already referred to one 
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38 N. H. MARCH 

finds (see Appendix 2) 

after removing j&c) in favour of jo  and j1. Adding Eqs. (3.19) and 
(3.20) leads back precisely to the quantity in the square bracket of 
Eq. (3.17). Thus, Eq. (3.9) is verified to hold in the limiting case of 
an infinite barrier. 

4. SUMMARY AND FUTURE DIRECTIONS 

For the finite square barrier model, solved via Dirac’s relativistic wave 
equation in the one-dimensional case, it has been demonstrated that 
the kinetic energy density and the ground-state electron density are re- 
lated through Eq. (3.8). This finding is in the spirit of relativistic DFT, 
in which the calculation of the kinetic energy density directly from the 
electron density is a major aim, thereby avoiding four-component Dirac 
wave functions. Of course, it is recognized that Jiq. (3.8) has been 
derived for a pretty specialized model, but it should be reiterated that 
in the relation (3.8) the barrier height has disappeared, even though 
the electron density and kinetic energy separately depend on Vo/rnc2. 

It has then been shown that the non-relativistic limit of (3.9) can be 
checked for the infinite barrier model, where it emerges that kine- 
tic and electron densities are related directly by Eq. (3.16), the d- 
dimensional version of which has also been derived in Appendix 1 .  
Derivatives of Eq. (3.16) with respect to the Fermi wavenumber kf 
lead back, after some manipulation, to Eq. (3.9). 
In view of the above findings, it would seem to be of interest for the 

future if the results of Baltin and March [9] on the one-dimensional 
relativistic square barrier model could be generalized to three dimen- 
sions using the Dirac equation. Such a generalization has already 
been given by these authors for (two and) three dimensions in the 
homogeneous electron liquid. 
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APPENDIX 1: &DIMENSIONAL GENERALIZATION 
OF NON-RELATIVISTIC RELATION BETWEEN 
KINETIC ENERGY AND ELECTRON DENSITIES 
FOR SEMI-INFINITE ELECTRON LIQUIDS 

The purpose of this Appendix is to generalize the non-relativistic 
one-dimensional relation (3.16) between kinetic energy and electron 
densities to d dimensions. Equations (2.1) and (2.2) then afford the 
appropriate starting point. 

Defining the dimensionless quantities 

Equation (2.1), valid for d odd, takes the form 

(Al.l) 

(A1.2) 

To relate this d dimensional expression to Eq. (3.11) of the main text, 
let us put d = 1 in Eq. (A1.2), when the spherical Bessel function part 
reduces to j0(2kfz) while the multiplying constant is simply (- 1). 
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40 N. H. MARCH 

Turning to the d dimensional kinetic energy density and using the 
dimensionless ratio Atd defined in Eq. (Al.l), one obtains 

One can readily calculate the ratio palldo appearing in Eq. (A1.3) 
from the results of Ref. [lo] as 

(A1.4) 

and therefore the first term on the RHS of Eq. (A1.3) is simply {(d+2)/ 
d}Ad(z), which again checks with the result for d = 1 in Eq. (3.16). 

Thus it only remains to relate the final terms in Eq. (A1.3) to Eq. 
(A1.2). Using once again the identity (3.21), but now with l +  1 = 
(d + 1) /2 for d odd, one has immediately 

Substituting this result forj(d+l),2 in Eq. (A1.3) then leads to 

(A1.6) 

Differentiating Eq. (2.1) with respect to z then allows the final term of 
Eq. (A1.6) to be replaced in favour of the derivative (a/Oz)AAz). 
Using Eq. (2.1), in which the first term on the RHS is 
(A1.4), one can eliminate tdo from Eq. (A1.6) to obtain 
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RELATIVISTIC ELECTRON LIQUID 41 

This is the desired non-relativistic d dimensional relation between 
kinetic energy and electron densities in this class of models. It immedi- 
ately reduces to Eq. (3.16) of the main text in the special case when 
d =  1. 

APPENDIX 2: SOME DETAILS OF DERIVATION 
OF EQ. (3.20) OF MAIN TEXT 

This Appendix will supply some details used in obtaining Eq. (3.20) of 
the main text. Into the LHS, one first inserts the result (3.16) and then 
utilizes Eq. (3.13). In terms of the spherical Bessel functionjl, one then 
finds after a short calculation: 

k; a [ 2zr :]j1(2kfz) +-;;-ii(2kfz). 2kj (A2.1) 
37~ akf 
- -Aat,,(~) = - - - 

For the derivative j ; ,  one now appeals to the mathematical identity 
[111 

(A2.2) 

with e = 1, and evidentlyjz(2kfz) then enters Eq. (A2.1). This equation 
then can be re-expressed readily as 

But one has the further identity [l 11 

je-I (x) +je+ i  (XI = (A2.4) 

and putting .t = l,j2(2k,z) can be removed from Eq. (A2.3) in favour 
ofjo andjl. The resulting equation is identical to Eq. (3.20). Using this 
equation together with Eqs. (3.19) and (3.17) verifies Eq. (3.9) for the 
infinite barrier model. 
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